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Ahstract We present a perturbative method of calculating the temperature-dependent 
correction, AG, to the Landauer conductance which is due to the inelastic electron-phonon 
scattering. The limits of applicability of these methods as well as the critical interval of 
tempenture (and other relevant parameters) on which the transition from the ballistic transpon 
to the Boltzmann-Dmde transport occurs are discussed. 

1. Introduction 

The classical Boltzmann-Drude conductivity, U ,  is proportional to the average time, t, that 
an electron travels without suffering any collisions. Up to a multiplicative constant of the 
order of unity, 

U ne2t/m" (1) 

where n is the number of conduction electrons (per unit volume) and m* is the effective 
mass. Consequently, even in the weak limit of the electron-phonon coupling constant, {, 
the perturbation theory cannot be employed directly for the calculation of conductivity. The 
first term in the expansion of U in powers o f f  scales with f as {-2 and the calculation of 
U typically requires solving of the Boltzmann equation. 

There exist cases, however, where the expansion of U in powers of C is possible. One 
such case is the transverse magnetoconductivity, 

where w, = eH/m"c is the cyclotron frequency. When o,r >> 1, equation (2) can be 
expanded in powers of c2  by making use of the perturbation theory applied, for example, to 
the Kubo formula (see for instance [I]). The classical formula (2) is valid for hw, < kBT. 
In the quantum regime @wc >> IEBT), the transverse magnetoconductance, uxx, can also be 
legitimately expanded in powers of f 2  [l]. 

An analogous situation is found in the calculation of the A c  conductivity in a high- 
frequency electric field. For 

wr > 1 (3) 

3 Currently at: Elecuical and Computer Engineering Department, Box 7911, North Camlina State University, 
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where w is the frequency of field oscillations, the conductivity can be obtained by means of 
a perturbation expansion in powers of 5'. The expansion begins from a zeroth-order term 
of the form 
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ne2 
Ima  = -. 

m'w (4) 

The next-order term in such an expansion is real. In the classical domain of frequencies, 
<< ksT (see for instance [Z, 3, 4]), this term is 

ne2 
Reu x - 

m W s  (5) 

where w is the AC frequency. For 

W t  >> 1 (6) 
equation (5 )  can be obtained from the perturbative expansion in powers of 5'. In the 
quantum regime (hm 2 ~ B T )  the expression (5) is replaced by a more complicated one. 
Nonetheless, such an expression is once azain obtained from a perturbative expansion in 
powers of a small parameter proportional to <'. 

These examples show that the applicability of the perturbation theory depends on values 
assumed by the conductance, G ,  in the limit of 5 + 0'. If G approaches infinity as 5 + O+, 
the perturbation theory cannot be directly applied. If, on the other hand, G remains finite 
as 5' + O+, there exists an interval of  values of 5 where the perturbation theory is valid. 

We use the perturbation theory for calculations of the variation in the Landauer 
conductance, AG, due to the interaction with phonons 151. The results obtained by making 
use of such perturbative methods are then analysed in detail and the critical interval of the 
various parameter values required for the transition from the ballistic to the Boltzmann- 
Drude transport is estimated. We are not aware of any experimental work where the phonon 
contribution to the conductance of a nanoshucture was systematically investigated. One of 
our puIposes is to determine the best conditions (with regard to the temperature, chemical 
potential and dimensions of a nanostrncture) for observation of such a contribution, which we 
pursue by working out a theory of the phonon-assisted part of current. In such a way we have 
obtained both the conditions for observation of quantum oscillations of the conductance in 
nanostructures and a ballistic transport as such (where the quantum oscillations are smeared 
out but nevertheless the transport cannot be considered as purely classicalt because of the 
relatively small number of channels). 

2. Theory 

It is well known (see, for instance, the review [6]) that in the absence of scattering G is 
a step-like function of the Fermi level as shown in figure 1. Each step corresponds to the 

t One must distinguish, in this respecc between the transverse and longitudinal degrees of freedom. In the case 
of a uniform wire, the electrons are confined in the tIIUlSverse plane and are unconstrained in the longitudinal 
direction. The confinement in the transverse plane leads to thc quantization, provided that the characteristic width 
of a wire is comparable to the Fermi wavelength. In the apposite case, where the wire width is large on a scale of 
the Fermi wavelength, namely, in the limit of N > 1 which is equivalent to raking the Ehrenfest limit of fi -f 0 
or rl + 0 along the transverse directions, the motion in the transverse plane approaches its classical limit It is in 
this sense and only in this S M S ~  that we refer to the conductance expressed by (14) as classical. The motion in the 
longitudinal direction is classid provided that the length of a wire is much larger than its width (and consequently, 
the Fermi wavelength) and particularly for the constant-cross-section wire that we consider here. Thus the nctual 
value of N (dependent on the ratio of the wire width to the Fermi wavelength) in no way affects the nature of 
electron transport along the longitudinal direction, which is classical in the absence of any scattering. 
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inclusion of a new mode of transverse quantization to the conduction process. According 
to the Landauer formula, the height of each step is equal to the quantum of conductance 
Go = 2e2 /h  multiplied by a constant that has the physical meaning of a transmission 
probability. 

Figure 1. In the absence of dissipation, the Landauer conductance, CQM, and its classical 
analogue, Ca.  are plotted ai functions of AiL for various temperatures (To = 1.25 K). These 
are computed from (13) and (14). respectively. Cumes are vertically offset. The dashed-dotted 
vertical line marks 1~ = 400 A which corresponds to SF = 14 meV. Inset: a schematic and 
somewhat exaggerated representation of the QLD structu~ king investigated. 

With an onset of phonon scattering the electronic transport may still be regarded as 
ballistic (and be treated as such to zero order) provided that the change in the conductance, 
AG, due to the phonons is sufficiently small. In other words, only a small fraction of the 
total number of electrons suffer collisions with the phonons. 

To apply a perturbative theory let us assume that the change of conductance is small. We 
consider here the simplest case of a uniform mesoscopic conductor of constant transverse 
cross section with respect to the x coordinate along the conductor. In such a case no 
redistribution of the electrostatic potential with the onset of the phonon scauering should 
be expected. 

The distribution function of the electrons in the absence of the electron-phonon 
interaction is given by fLo)(p) = f'Q(6 eV/2 - /I) where fm is the Fermi function 
(see [6]). E = ~ ( p )  = ~ " ( 0 )  + p2/2m* is the electron energy, p is the x-component of the 
electron quasi-momentum, n is a subband index, and the upper (lower) sign is for p > 0 
(P < 0). 

Adding weak electron-phonon interactions we have f = f(O) f Af with Af satisfying 
the equation U aaf/ax = I [f] + e(a@/ax)(af(O)/ap). The quantity U = aqap is 
the electron velocity, @ is the electrostatic potential assumed to be independent of time, 
and I [f] represents the electron-phonon collision term (see below). Here we assume 
that L, ;-> A. (A. being the electron de Broglie wavelength) which permits us, within the 
semiclassical approximation, to treat f as a function of p and x .  For p =- 0 (p < 0) the 
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soIution of the equation for A f ( x )  is 
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1 a# a f 
Af(x) = - (x  f LJ2)Z’ [f] + 5 /dx zap. 

U V 
(7) 

The zero of the coordinate system is assumed to be at the midpoint of the conductor of 
total length L,, and we made use of the boundary condition Af = 0, which is satisfied at 

The variation in the current, AJ,  due to scattering is given by (compare with the classical 
x = fL,/2. 

case treated in [7]) 

Here summation over all the phonon branches is implied. It is readily seen that, in 
accordance with the reasoning given above, Z [ f ] ,  and therefore A J ,  is proportional to 
the square of the electron-phonon coupling constant. 

The collision term is given by 

8‘3’ = [f’(l - f )  ( N ,  + 1 / 2 f  112) - f(1- f ’ ) ( N ,  + 1 / 2 F  1/2)1S(E‘ - E  FAO,) 

where e(.) is the step function, E = E,&), d = D - 1 and D is the dimension of the 
system. 

We consider only scattering by three-dimensional extended acoustic phonons (although 
the phonons localized within the nanostructure or near its interface with a bulk could have 
been easily included into the scheme). Then [9] 

where p is~the mass density and Z is the deformation potential constant for the longitudinal 
phonons that has the physical significance of the coupling constant, <, introduced above. 

The integrations in (9) are over the three components of the phonon wave vector. 
The two transverse wave vector components are indicated by 91; the third integration 
is equivalent to the integration over the electron quasi-momentum, p’. because of the 
conservation of quasi-momentum. 

In the spirit of the method described above we insert the zeroth approximation (f,O)) 
for the distribution function into (9). We assume that the phonons are in equilibrium and 
hence N is the Bose function. Detailed balance guarantees a vanishing collision term for 
the equilibrium distribution function and constant temperature and chemical potential. This 
means that the distribution functions, f“’, give a finite connibution in the collision term 
if and only if p and p‘ are of opposite sign, i.e. their chemical potentials are different. In 
other words, only those phonons that can backscatter the electrons contribute. It is readily 
seen that this condition imposes a certain lower limit for the magnitude of the phonon wave 
vectors. At low enough temperatures, IAGI must therefore increase exponentially with T .  

Expanding the Fermi distribution functions in powers of the small parameter e V / k B T ,  
we arrive at the following result for the change in conductance due to collisions : 
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2 where M,,,,(~L) = / (n ' ld 'J~'r~ln) [  . Here we wish to emphasize that the expansion in powers 
of the electron-phonon coupling constant can also be easily performed for a non-Ohmic 
case. We shall discuss a non-Ohmic conductance in nanostructures in a separate paper. 

In order to restrict consideration to the first term of the expansion in the electron-phonon 
coupling constant squared, c2. we require that the probability of the electron scattering within 
the nanostructure is much smaller than unity, or, in other words, that IAGI/G << 1. We 
expect the perturbation theory to be applicable in this limit. This condition~is satisfied for 
a wide range of parameters as can be seen in figures 2 and 3 where for a wire width, L,, 
chosen to be 1000 A, IAG//G << 1 for up to liquid nitrogen temperatures. In the remaining 
discussion this condition is explicitly assumed to be fulfilled. 

To obtain the classical conductance change, AGcL, we replace the sum over subbands 
n (n') in (1 1) by the integral over p~ @'J and the conservation of quasi-momentum is 
now restored. Then [ 8 ]  

where V is the volume of the D-dimensional wire and q = p' - p .  The quantum and the 
classical conductance are, respectively, 

The classical conductance is independent of the length of a wire provided that boundary 
scattering is purely specular (or, in other words, that the conservation of all three 
components of the quasi-momentum holds). and is analogous to the 3D Sharvin's point 
contact conductance [lo]. As can be seen from figure 1, at zero temperature G Q ~  = GCL 
provided that E F  is at the threshold of propagation in one of the subbands (N = kFL,/n 
or e ~ ( 0 )  = E F ) .  This follows directly from (14) and (13). Furthermore, with sufficient 
thermal smearing, in the l i i i t  where large number of channels participate in the conduction 
(N >> l), we have GQM + GCL. 

In figures 2(a) and 3(a) we present numerical results for quasi-10 GaAs wires with 
L, = 100 A and L, = fim (the x-axis being along the propagation direction, while the 
effective width of the channel is L,) as functions of Fermi wavelength, ).F h/=F 
(for a fixed L, = 1000 A). In figures 2@) and 3(b) the results are given as functions of 
the channel width L, (with fixed EF = 14 meV corresponding to ).F = 40 nm). Variation 
of both L, and h~ can be accomplished experimentally by varying the gate voltage. One 
can see from figures 2 and 3 that this condition is fulfilled for a wide range of transverse 
wire dimensions and temperatures. For instance, for a wire with transverse dimensions 
100 x.400 A, this ratio is small up to liquid nitrogen temperatures. We wish to emphasize 
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Figure 2. Both (a) -AGQM(AF) (solid) and -AGcL(AF) (dashed) (at Ly = lOlM A) as well as 
b) -AGQM(L,) (solid) and - A G d L , )  (dashed) (at EF = 14 meV) are computed from (11) 
and (12) for temperatum TITO = 1, 2, 4. 8.16, 32. 64 where 70 = 1.25 K. The dashed-dotted 
vertical line marks .LF = 400 A which corresponds to CF z 14 meV. 

that at such high temperatures it is difficult to observe oscillations of the conductance but 
it is possible to observe both ballistic resistance and its enhancement by the phonons. 

The electrostatic potential is assumed to be flat and to have infinite walls at the 
boundaries. As mentioned above, we consider here only extended phonons. The results are 
presented in the form of curves scaled in units corresponding to GaAs material constants 
and a particular sample size [Ill.  

The changes in classical and quantum conductance as functions of Fermi wavelength XF 
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Figure 3. (a) -AGQM(AF) is plotted as a function of temperame and ).il (for Ly = I000 A), 
and (b) -AGcL(AF) is plotted as a function of tempemme and L, (for EF = 14 mev). 

are shown in figure 2(a). At sufficiently high temperatures (kBT =- 1.5€1(0)) the oscillatoly 
structure in AG, which is due to the size quantization, is smeared out (see figure 3(a)) and 
the classical and the quantum conductances become quite similar. For sufficiently large N ,  
one must have ksT >> €,i(O) - e~-l(O) with e~-l(O) < EF < e ~ ( 0 )  in order for A G Q ~  as 
expressed by (1 1) to approach its classical value. In the opposite case of a relatively large 
difference c ~ ( 0 )  - e~- j (O) ,  the N >> 1 limit fails to reconcile in full the quantum and 
the classical conductance changes which then differ not only by an oscillating part at low 
temperatures but also by a~temperature-dependent factor at higher temperatures. For this 
reason, since the limit N >> 1 in our case is weakly enforced, the two conductances are not 
exactly equal even at higher temperatures as can be seen from figure 2(a). The saturation 
of AGQM with h~ is also temperature dependent. Since only half as many electron states 
can participate in the transport near the threshold of propagation of the lowest subband, 
the saturation value of AGQM is almost twice that near the threshold of propagation. At 
lower temperatures (ksT i 1.5~1(0)), resonant behaviour of AGQM(~F)  begins to emerge. 
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One observes periodic oscillations in A;' with a period of 0.5L;' where Int(ZL,/hF) is 
the number of propagating channels at zero temperature. The variation in conductance has 
a maximum near the opening of each new quantum channel. At even lower temperatures 
( k ~  T c 0.261 (0)). the back-scattering current is almost exclusively carried by the uppermost 
propagating channels. 

The behaviour of AGQM as a function of L, is shown in figures 2(b) and 3(b). At low 
temperatures, the resonant structure in AGQM is again evident. The oscillations in L, have 
a period of A F / ~  and persist until L, is sufficiently large so that AGQM approaches its linear 
classical l i t .  (At temperatures of the order of a millikelvin, one should expect to observe 
these oscillations for wires as wide as a micron.) At high temperatures, AGQM is linear at 
low values of L,, and the oscillations are almost altogether absent (see figure 3(b)). 

The reason that AGQM approaches its classical limit in figure 2(b) and not in figure 
2(a) is related to the energy subband structure that is specific to our choice of an infinite 
square-well bounding potential. As L, increases at constant temperature and E F ,  both the 
number of propagating subbands and the thermal smearing increase, which guarantees that 
AGQM approaches its classical Limit. In contrast, as ~ / A F  increases, keeping temperature 
and L, constant, only the number of propagating subbands increases, while the thermal 
smearing condition begins to break down since e ~ ( 0 )  - EN-, (0) << ~ B T  is no longer met at 
higher EF and N.  Even at higher temperatures, the oscillations in AGQM begin to appear at 
sufficiently high EF as AGQM diverges away from its classical limit. AGQM and AGCL in 
figure 2(a) are not equal precisely for this reason; however, these conductances are identical 
for large L, except at very low temperatures. 

3. Conclusion 

We have worked out a perturbative method to treat the phonon-assisted part of the ballistic 
resistance. We believe that the approach developed should be applicable to a number of 
mesoscopic problems. The limits of applicability of such an approach have been discussed. 
As an illustration, a particularly simple nanostructure consisting of a uniform mesoscopic 
wire connecting two thermal reservoirs is investigated. By performing a perturbation 
expansion, we have calculated a negative change of conductance in such a wire due to 
the interaction between electrons and acoustic phonons in the linear response regime. The 
dependence of this conductance on temperature, wire width and Fermi level was determined. 
The oscillations of the change in conductance AGQM with wire width and Fermi wavelength 
have been found. These oscillations, along with the usual thermal broadening associated 
with the equilibrium thermal distribution of electrons, fully determine the broadening of the 
conduction steps due to increasing temperature. 

Until now, to the best of our knowledge, no experimental attempts to resolve phonon- 
assisted contributions to the conductance of a nanostructure leading to such a broadening 
have been made. We hope that our results will change the situation and will motivate 
experimental work that would attempt to confirm our predictions. Experimental investigation 
of the phonon-controlled contribution to the conductance can provide valuable information 
about the electron-phonon interaction within a nanostructure and can help single out the 
type of phonon that is mainly responsible for the electron scattering under given conditions 
(temperature, chemical potential, width of the channel, etc). These experiments can also 
help answer the following important question: under which applied voltage and with what 
accuracy can the dishibution of the phonons be considered an equilibrium one? Although 
the oscillations in AGQM disappear with increasing temperature, AGQM does not approach 
its classical limit, AGcL, since only a small number of channels participate in the conduction 
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process. At low temperatures, as is evident from figure 2, the classical limit greatly differs 
from AGQM. except in the case of extremely wide wires. In this sense, no true classical 
transport should be expected in mesoscopic wires. Finally, a critical range of temperatures 
at which the electron-phonon interaction in nanostructures may begin to have a pronounced 
effect on the conductance is determined. 
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